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The Rayleigh-Taylor instability of a Newtonian viscous fluid overlying an Oldroydian viscoelastic 
fluid containing suspended particles in a porous medium is considered. As in both Newtonian 
viscous-viscous fluids the system is stable in the potentially stable case and unstable in the poten-
tially unstable case, this holds for the present problem also. The effects of a variable horizontal 
magnetic field and a uniform rotation are also considered. The presence of magnetic field stabilizes 
a certain wave-number band, whereas the system is unstable for all wave-numbers in the absence 
of the magnetic field for the potentially unstable configuration. However, the system is stable in the 
potentially stable case and unstable in the potentially unstable case for highly viscous fluids in the 
presence of a uniform rotation. 

1. Introduction 

A comprehensive account of the instability of a 
plane interface between two Newtonian fluids, under 
various assumptions of hydrodynamics and hydro-
magnetics, has been given by Chandrasekhar [1]. 
Bhatia [2] has considered the Rayleigh-Taylor insta-
bility of two superposed viscous conducting fluids in 
the presence of a uniform horizontal magnetic field. 
Sharma [3] has studied the instability of the plane 
interface between two superposed Oldroydian visco-
elastic conducting fluids in the presence of a uniform 
magnetic field. Bhatia and Steiner [4] have studied the 
thermal instability of a Maxwellian viscoelastic fluid 
in the presence of rotation and have found that the 
rotation has a destabilizing effect, in contrast to its 
stabilizing effect on a Newtonian fluid. Eltayeb [5] has 
studied the convective instability in a rapidly rotating 
Oldroydian viscoelastic fluid. 

In geophysical situations the fluid is often not pure 
but contains suspended particles. Scanlon and Segel 
[6] have considered the effect of suspended particles on 
the onset of Benard convection and found that the 
critical Rayleigh number is reduced because of the 
heat capacity of the particles. The suspended particles 
were thus found to destabilize the layer. The medium 
has been considered to be non-porous in all the above 
studies. 

The flow through porous media is of considerable 
interest for petroleum engineers and in geophysical 
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fluid dynamicists. Darcy's equation is a macroscopic 
equation which describes the flow of an incompress-
ible Newtonian fluid of viscosity // through a homoge-
neous and isotropic porous medium of permeability 
/cx. In this equation the usual viscous term is replaced 
by the resistance term — ( n / k j v , where v is the filter 
velocity of the fluid. The thermal instability of fluids in 
a porous medium in the presence of suspended parti-
cles has been studied by Sharma and Sharma [7]. The 
suspended particles and the permeability of the 
medium were found to destabilize the layer. The Ray-
leigh instability of a thermal boundary layer in the 
flow through a porous medium has been considered 
by Wooding [8]. Oldroyd [9] proposed a theoretical 
model for a class of viscoelastic fluids. An experimen-
tal demonstrat ion by Toms and Strawbridge [10] re-
vealed that a dilute solution of methyl methacrylate in 
n-butyl acetate agrees well with the theoretical model 
of Oldroyd. 

The instability in a porous medium of a plane inter-
face between viscous and viscoelastic fluids containing 
suspended particles may be of interest in geophysics 
and biomechanics and is therefore studied in the pres-
ent paper. The effects of a variable horizontal mag-
netic field and uniform rotation, bearing relevancy in 
geophysics, are also considered. 

2. Perturbation Equations 

Let Tu, iij, eu, n, /., /.0(</.), p, <5y, v ;, x i ? and d/dt 
denote respectively the total stress tensor, the shear 
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stress tensor, the rate-of-strain tensor, the viscosity, 
the stress relaxation time, the strain retardation time, 
the isotropic pressure, the Kronecker delta, the veloc-
ity vector, the position vector and the mobile opera-
tor. Then the Oldroydian viscoelastic fluid is de-
scribed by the constitutive relations 

Tij= -Pöij + Tij, 

i + ; . 
dr 

T i j = 2 n [ l + / . 0 -
dr 

1 (dVj dv 
( i ) 

Relations of the type (1) were proposed and studied 
by Oldroyd [9]. Oldroyd showed that many Theologi-
cal equations of general validity reduce to (1) when 
linearized. /.o = 0 yields the Maxwellian fluid, whereas 
/. = /.0 = 0 gives the Newtonian viscous fluid. 

Consider a static state in which an incompressible 
Oldroydian viscoelastic fluid containing suspended 
particles is arranged in horizontal strata in a porous 
medium. The character of the equilibrium of this ini-
tial static state is determined, as usual, by supposing 
that the system is slightly disturbed and by following 
its further evolution. 

Let v{u, v, w), g and p denote respectively the veloc-
ity of pure fluid, the density and the pressure; u(x, t) 
and N (x, t) denote the velocity and number density of 
the suspended particles, respectively. K = 6n Q V rj, 
where rj is the particle radius, v is the Stokes' drag 
coefficient, « = (/, r, s), x = (x, y, z) and A' = (0, 0, 1). Let 
e, kx, and g stand for medium porosity, medium per-
meability and acceleration due to gravity, respectively. 
Then the equations of motion and continuity for the 
Oldroydian viscoelastic fluid containing suspended 
particles in a porous medium are 

ef e_ 
e V A dt 

dv 1 
- + -(vV)v 
dt e 

= 1 + A 
8r 

KN 
(u-v) 

£ 

, 0 \ P 

V • v = 0. 

(2) 

(3 ) 

Since the density of the moving fluid remains un-
changed, we have 

00 
£ — + ( » • V ) g = o . 

dt 
(24) 

In the equations of motion (2), by assuming a uni-
form spherical particle shape and small relative veloc-
ities between the fluid and particles, the presence of 
particles adds an extra force term proportional to the 
velocity difference between the particles and the fluid. 
Since the force exerted by the fluid on the particles is 
equal and opposite to that exerted by the particles on 
the fluid, there must be an extra force term, equal in 
magnitude but opposite in sign, in the equations of 
motion of the particles. The distances between parti-
cles are assumed quite large compared with their di-
ameter, so that interparticle reactions are ignored. The 
effects of pressure, gravity and Darcian force on the 
suspended particles are negligibly small and therefore 
ignored. If m N is the mass of particles per unit vol-
ume, then the equations of motion and continuity for 
the particles, under the above assumptions, are 

m N 
du 1 
— + - ( W V)l/ 
dt e 

= K N(v-u), 

8 N 
£ — + V -(N ii) = 0. 

dt 

(5) 

(6) 

Let v(u, v, w), Ö g, ö p and u{l, r, s) denote respec-
tively the perturbations in fluid velocity (0, 0, 0), fluid 
density g, fluid pressure p and particle velocity (0,0,0). 
Then the linearized perturbation equations of the fluid-
particle layer are 

- 1 + A -
6 \ 8 i > _ 

dt dt 
1 + / . 

dt 
K N 

— V0p + g0g-{ (u — v) 
£ 

- 1 + / - 0 
8 
8 t j kx 

v, 

V • ® = 0, 

£ — Ö g = 
dt 

m 6 
— — + 1 " = r ' 
K dt ' 

w(Dg), 

and 

8 M 

~eT + v • « = o , 

£ N 

(7 ) 

(8) 

(9) 

(10) 

(11) 
where M = Jrj- and N0, N stand for initial uniform 

No 
number density and perturbation in number density, 
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respectively, g (0, 0, — g) is the acceleration due to Oldroydian viscoelastic fluid) separated by a horizon-

gravity and D = . 

Analysing the disturbances into normal modes, we 
seek solutions whose dependence on x, y, and t is 
given by 

exp (i kx x + i ky y + n t), (12) 

tal boundary at z — 0. Then, in each region of con-
stant g, constant n and constant mN, (18) reduces to 

(D2-k2) w = 0 . 

The general solution of (19) is 

w = Ae + k z + Be~k:, 

(19) 

(20) 

where kx, ky are horizontal wave numbers, k2 = k2
x + k2, where A and B are arbitrary constants. 

and n is a complex constant. 
For a perturbation of the form (12), (7)-(10) give ent problem are: 

after eliminating u, 

The boundary conditions to be satisfied in the pres-

0 + 
m N 

(T N + 1) 
(1 +Xn)nu 

-{l+/.n)( — ikxöp) — (\+A0n)-—u, 

(i) The velocity w should vanish when z -> + co (for 
the upper fluid) and z — oo (for the lower fluid). 

(13) (ü) vv(z) is continuous at z = 0. 
(iii) The jump condition at the interface z = 0 between 

the fluids is obtained by integrating (18) over an 
infinitesimal element of z including o, and is 

Q + 
mN 

(•rn + 1) 
(1 n) n v (14) 

0 + 
mN 

(rn + 1) 
(1 + /.n) n w 

M 

ikxu + ikyv + D w = 0, 

snög=—w(Dg), 

where z = m/K. 
Eliminating Sp between (13)—(15) and using (16) 

and (17), we obtain 

n , n(\+/.n) 
- (1 + An) [D{gDw)-k2 gw]+— 
£ £ ( t n + l ) 

[D(mN Dw)-k2mNw] + 
(1+Ap n) 

[D{fiDw)-k2 nw]+ ( 1 + A n ) g / c 2 ( D g) w = 0 . 
en 

3. Two Uniform Viscous and Viscoelastic Fluids 
Separated by a Horizontal Boundary 

Consider the case of two uniform fluids of densities, 
viscosities, suspended particles number-densities; g 2 , 

N2 (upper Newtonian fluid) and N1 (lower 

£ 

= (l+An)(-iky6p)-{l+k0n) — v, 
k i 

+ n m 

e ( r n + l ) 
[N2Dxv2-(\+An)N1 DWl]x = 0 

1 

(15) 
+ ~[fi2Dw2-(\ +A 0 n) / i j D w j z = 0 

= (i+/.n)[-DSp-gÖQ]-(i+A0n) — w, 
^ i 

gk2 

£ n (21) 

Remember that upper fluid is Newtonian and lower 
(16) Oldroydian viscoelastic. w0 is the common value of w 

at z = 0. 
Applying the boundary conditions (i) and (ii), we 

can write 

(17) 

w1=Ae + kz(z< 0), (22) 

w2 = Ae~kz(z> 0), (23) 

(18) where the same constant A has been chosen to ensure 
the continuity of w at z = 0. Applying the condition 
(21) to the solutions (22) and (23), we obtain 

[tA^J n4 + [t(£>2+ + ^ +iV1/m + — tA0 fxt] n 

+ 

+ 

K 

(g2 + g1) + m(N2 + Nl)+ — x(n2 + n1) ki 

ki 

A 
-[gk(g2-gl)] = 0. (24) 
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If g2 (24) does not admit of any positive root, 
and so the system is stable. If £>2 > 0 1 , (24) allows one 
positive root of n and so the system is unstable. 

4. Effect of a Variable Horizontal Magnetic Field 

Consider the motion of incompressible, infinitely 
conducting Newtonian and Oldroydian viscoelastic 
fluids in a porous medium in the presence of sus-
pended particles and a variable horizontal magnetic 
field H(H{z), 0, 0). Let h(hx, hy, hz) denote the pertur-
bation in the magnetic field, then the linearized pertur-
bation equations are 

g( . 0 \ 6r _ / , 0_ 

e \ +/' dt) dt~\ +/' dt 

~ K N — V o p + g Ö £H (M — v) 
e 

+ — {(V x H) x h + (V x h) x H) 
4 7t 

V • A = 0, 

dh 
e — =Vx(vxH) 

61 

(25) 

(26) 

(27) 

together with (8)—(10). Assume that the perturbation 
h (hx, hy, h,) in the magnetic field has also a space and 
time dependence of the form (12). \ie stands for the 
magnetic permeability. Following the procedure as in 
Sect. 3, we obtain 

g 
[TkQx\ n* + [z(Q2 + Q1) + AQl+Nl/.m+-rT a0 fij] n3 

+ (Q2 + Qi) + MU2 + N1)+ — T(H2 + HI) 

+ l ~ ^ 0 ^ 1 + 9 l < T Q l A + k2
xV2

AZAQ l 

r(H2 + H1) + gkglA + k2
x ii\aQi 

_ki 

+ k2
xv2

AT(Q2 + Ql)-gkT(Q2-Q1) 

+ [k2
xv2

A(Q2 + ei)-gk(Q2-ei)] = 0, (28) 

where, for the sake of simplicity, we have considered 
that the Alfven velocities of the two fluids are the 
same, so that 

H e " 2 HeH2
2 

47r 4n Q2 ' 

For the potentially stable arrangement e 2 <£? i , (28) 
does not allow any positive root as there is no change 
of sign. The system is therefore stable. Thus when the 
ordinary (Newtonian) viscous fluid overlies an Oldroy-
dian viscoelastic fluid in a porous medium in the pres-
ence of suspended particles and a variable horizontal 
magnetic field, the system is stable for the potentially 
stable configuration. 

For the potentially unstable configuration Q2>QX, if 

k2
x v2

A(g2 + Ql)>gk{Q2-Q1), (29) 

(28) does not admit any change of sign and so has no 
positive root. Therefore the system is stable. 

However, if 

k\ v2
A(g2 + Qi)<gk(Q2-gl), (30) 

the constant term in (28) is negative. Equation (28), 
therefore, allows one change of sign and so has one 
positive root. The occurrence of a positive root implies 
that the system is unstable. 

Thus for the unstable case the system is 
stable or unstable according as kjvA(g2 + g1) is 
greater than or smaller than g k(g2 — gl). In the ab-
sence of a magnetic field, (28) has one positive root, 
and so the system is unstable for all wave numbers for 
the potentially unstable case. But the magnetic field 
has got a stabilizing effect and completely stabilizes 
the wave number band k>k*, where 

k* = sec2 0, (31) 
(82 + Qi)vA 

and 6 is the inclination of the wave vector k to the 
direction of the magnetic field H i.e. kx = k cos0. 

5. Effect of Uniform Rotation 

Here we consider the motion of an incompressible 
Oldroydian viscoelastic fluid containing of suspended 
particles in a porous medium in uniform rotation 
ß ( 0 , 0, Q). Then the linearized perturbation equations 
are 
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EL "61J dt V "91 

KN 2 g 
- V öp + g dg^i (ii —®)H (v x ß ) 

e e 
. 9 \ N 

1 + / ' ° dijk," 

21 

(32) 

together with (8)—(10). 
Following the same procedure as in Sect. 3 (and Chandrasekhar [1], p. 443), we obtain 

1 + 
mn(\ +/.n) Nt +mnN2 

(TH + 1) (1 + / n ) n + ( l + A 0 r i ) + + 

gk2g2-gk2(\+An)gl 

n x 
£ vl f £v) 

(\+An)n + (\+A0n) — [>Q1 + hi+ — j g2 

(33) 

+ 4 ( i n + l ) ß 2 g2-4(l+ An)2 (zn + l)ü2g1 
= 0, 

mnN e v 
(1 4 -xn) ( rn + l ) n + (l +An) + (1 +A0n)(zn +1) — 

e ki_ 

e v £ v 
(1 + A n) n + (l + A0 n) Q l + \ n + 0 2 

where 

1 
1 + 2 

4 ß (1 + x n) (T n + 1 ) 

mnN „ e v 
H ( 1 + A H ) ( T « + 1) + ( 1 + / H ) + ( 1 + A 0 " ) (TW + 1) — 

g 

(34) 

for a highly viscous fluid. v( = p/g) stands for the kine-
matic viscosity. 

Here we assumed the kinematic viscosities of both 
fluids to be equal, i.e. v1 = v2 = v (Chandrasekhar [1], 

a , , m N mNt m N2 .... 
p. 443) and = L = as these simplifying 

Q QI QI 
assumptions do not obscure any of the essential fea-
tures of the problem. 

Equat ion (33), after substituting the value of x from 
(34) and simplification, yields 

Al3n13 + A12n12 + Alt n11 

+ ... +A2n2 + A1n + Ao = 0 
where 

A13=A4 T 4 0 1 ? 

e v 
A0 =-gk(g2-g1) — 

I k i 
+ 2Q2 

(35) 

(36) 

and the coefficients A l — A 1 2 , being quite lengthy and 
not needed in the discussion of stability, have not been 
written here. 

Fo r the potentially stable arrangement g 2 < g ^ all 
the coefficients of (35) are positive. So, all the roots of 

(35) are either real and negative, or there are complex 
roots (which occur in pairs) with negative real parts 
and the rest negative real roots. The system is there-
fore stable in each case. 

For the potentially unstable ar rangement g2>glt 

the constant term is negative, and so there is at least 
one change of sign in (35). Therefore (35) allows at 
least one positive root of n, meaning thereby instabil-
ity of the system. 

Thus the effect of uniform rota t ion on the motion of 
an incompressible viscous fluid overlying an Oldroy-
dian viscoelastic fluid through a porous medium in the 
presence of suspended particles makes the system sta-
ble for potentially stable cases and unstable for poten-
tially unstable cases. 
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