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The Rayleigh-Taylor instability of a Newtonian viscous fluid overlying an Oldroydian viscoelastic
fluid containing suspended particles in a porous medium is considered. As in both Newtonian
viscous-viscous fluids the system is stable in the potentially stable case and unstable in the poten-
tially unstable case, this holds for the present problem also. The effects of a variable horizontal
magnetic field and a uniform rotation are also considered. The presence of magnetic field stabilizes
a certain wave-number band, whereas the system is unstable for all wave-numbers in the absence
of the magnetic field for the potentially unstable configuration. However, the system is stable in the
potentially stable case and unstable in the potentially unstable case for highly viscous fluids in the

presence of a uniform rotation.

1. Introduction

A comprehensive account of the instability of a
plane interface between two Newtonian fluids, under
various assumptions of hydrodynamics and hydro-
magnetics, has been given by Chandrasekhar [1].
Bhatia [2] has considered the Rayleigh-Taylor insta-
bility of two superposed viscous conducting fluids in
the presence of a uniform horizontal magnetic field.
Sharma [3] has studied the instability of the plane
interface between two superposed Oldroydian visco-
elastic conducting fluids in the presence of a uniform
magnetic field. Bhatia and Steiner [4] have studied the
thermal instability of a Maxwellian viscoelastic fluid
in the presence of rotation and have found that the
rotation has a destabilizing effect, in contrast to its
stabilizing effect on a Newtonian fluid. Eltayeb [5] has
studied the convective instability in a rapidly rotating
Oldroydian viscoelastic fluid.

In geophysical situations the fluid is often not pure
but contains suspended particles. Scanlon and Segel
[6] have considered the effect of suspended particles on
the onset of Bénard convection and found that the
critical Rayleigh number is reduced because of the
heat capacity of the particles. The suspended particles
were thus found to destabilize the layer. The medium
has been considered to be non-porous in all the above
studies.

The flow through porous media is of considerable
interest for petroleum engineers and in geophysical
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fluid dynamicists. Darcy’s equation is a macroscopic
equation which describes the flow of an incompress-
ible Newtonian fluid of viscosity u through a homoge-
neous and isotropic porous medium of permeability
k, . In this equation the usual viscous term is replaced
by the resistance term —(u/k,)v, where v is the filter
velocity of the fluid. The thermal instability of fluids in
a porous medium in the presence of suspended parti-
cles has been studied by Sharma and Sharma [7]. The
suspended particles and the permeability of the
medium were found to destabilize the layer. The Ray-
leigh instability of a thermal boundary layer in the
flow through a porous medium has been considered
by Wooding [8]. Oldroyd [9] proposed a theoretical
model for a class of viscoelastic fluids. An experimen-
tal demonstration by Toms and Strawbridge [10] re-
vealed that a dilute solution of methyl methacrylate in
n-butyl acetate agrees well with the theoretical model
of Oldroyd.

The instability in a porous medium of a plane inter-
face between viscous and viscoelastic fluids containing
suspended particles may be of interest in geophysics
and biomechanics and is therefore studied in the pres-
ent paper. The effects of a variable horizontal mag-
netic field and uniform rotation, bearing relevancy in
geophysics, are also considered.

2. Perturbation Equations

Let T, 1, e, 4, 4, Ao(<A4), P, Oyj, Vi, %;, and d/dt

denote respectively the total stress tensor, the shear
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stress tensor, the rate-of-strain tensor, the viscosity,
the stress relaxation time, the strain retardation time,
the isotropic pressure, the Kronecker delta, the veloc-
ity vector, the position vector and the mobile opera-
tor. Then the Oldroydian viscoelastic fluid is de-
scribed by the constitutive relations

Tj=—po;+ty
. d . d
1+/'EE ;=2 U H—AOE €ijs
1 60i+6vj 1)
e..= — | — — .
Y2 \0%; O

Relations of the type (1) were proposed and studied
by Oldroyd [9]. Oldroyd showed that many rheologi-
cal equations of general validity reduce to (1) when
linearized. 4, =0 yields the Maxwellian fluid, whereas
/.=/,=0 gives the Newtonian viscous fluid.

Consider a static state in which an incompressible
Oldroydian viscoelastic fluid containing suspended
particles is arranged in horizontal strata in a porous
medium. The character of the equilibrium of this ini-
tial static state is determined, as usual, by supposing
that the system is slightly disturbed and by following
its further evolution.

Let v(u, v, w), 0 and p denote respectively the veloc-
ity of pure fluid, the density and the pressure; u (%, t)
and N (%, t) denote the velocity and number density of
the suspended particles, respectively. K=6mo v 7,
where 7 is the particle radius, v is the Stokes’ drag
coefficient, u=(l, r, s), x=(x, y, z) and 4'=(0, 0, 1). Let
¢, k,, and g stand for medium porosity, medium per-
meability and acceleration due to gravity, respectively.
Then the equations of motion and continuity for the
Oldroydian viscoelastic fluid containing suspended
particles in a porous medium are

Aat a[-}~8v v

2
A3)

Since the density of the moving fluid remains un-
changed, we have

V- -v=0.

O

B +(v+V)e=0.

€ (4)
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In the equations of motion (2), by assuming a uni-
form spherical particle shape and small relative veloc-
ities between the fluid and particles, the presence of
particles adds an extra force term proportional to the
velocity difference between the particles and the fluid.
Since the force exerted by the fluid on the particles is
equal and opposite to that exerted by the particles on
the fluid, there must be an extra force term, equal in
magnitude but opposite in sign, in the equations of
motion of the particles. The distances between parti-
cles are assumed quite large compared with their di-
ameter, so that interparticle reactions are ignored. The
effects of pressure, gravity and Darcian force on the
suspended particles are negligibly small and therefore
ignored. If m N is the mass of particles per unit vol-
ume, then the equations of motion and continuity for
the particles, under the above assumptions, are

mN[aj+l(u.v)u]=K Nio—, (5)

o ¢

SQJY+V-(Nu):0. (6)
ot

Let v(u, v, w), d 9, 0 p and u(l, r, s) denote respec-
tively the perturbations in fluid velocity (0, 0, 0), fluid
density g, fluid pressure p and particle velocity (0, 0, 0).
Then the linearized perturbation equations of the fluid-

particle layer are
1
A ot
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and
oM
—+V-u=0, (11)
ot
eN Eecos .
where M =—— and N,, N stand for initial uniform

No
number density and perturbation in number density,
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respectively, g (0, 0, —g) is the acceleration due to
gravity and D= (%

Analysing the disturbances into normal modes, we
seek solutions whose dependence on x, y, and ¢t is
given by

exp(ik,x+ik, y+nt), (12)

where k_, k, are horizontal wave numbers, k*=kZ+k
and n is a complex constant.
For a perturbation of the form (12), (7)—(10) give

after eliminating u,

1
€
1
€

2
Y

]

N
](1+}tn)nu (13)

(tn+1)
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1

mN
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=(1+4n) (—ik,p)—(1+4 n)kﬁv,
1

: i 15
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ik,u+ik,v+Dw=0, (16)

endo=—w(Dy), 17)

where t=m/K.
Eliminating 6 p between (13)—(15) and using (16)
and (17), we obtain

n(1+in)

. _ L2
(1+4n)[D(eDw)—k Qw]+s(rn+1)

h

" (18)

-[D(mNDw)—kszw]—f-%O—n)
1

- [D(uDw)—k* uw]+ %

gk*(D o) w=0.

3. Two Uniform Viscous and Viscoelastic Fluids
Separated by a Horizontal Boundary

Consider the case of two uniform fluids of densities,
viscosities, suspended particles number-densities; g,,
Uz, N, (upper Newtonian fluid) and ¢,, u,, N, (lower
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Oldroydian viscoelastic fluid) separated by a horizon-
tal boundary at z=0. Then, in each region of con-
stant g, constant u and constant m N, (18) reduces to

(D*—k*)w=0. (19)
The general solution of (19) is

w=Ae k4 Be Tk, (20)

where 4 and B are arbitrary constants.
The boundary conditions to be satisfied in the pres-
ent problem are:

(i) The velocity w should vanish when z —» + oo (for
the upper fluid) and z — — oo (for the lower fluid).

(i) w(z) is continuous at z=0.

(iii) The jump condition at the interface z=0 between
the fluids is obtained by integrating (18) over an
infinitesimal element of z including o, and is

n \
;[Qz Dw,—(14+4in)o, Dw,],-,

nm

+ m[NZDWZ—“ +)tn) Nl le]z=0

1 ,
+ & (U Dwy,—(1+ 4o n) py Dwy],
1

2
=L g~ +ime,] w,. 1)
en

Remember that upper fluid is Newtonian and lower
Oldroydian viscoelastic. w, is the common value of w
at z=0.

Applying the boundary conditions (i) and (ii), we
can write

w,=Aet* (2<0),

w,=4e % (2>0),

(22)
(23)

where the same constant A has been chosen to ensure
the continuity of w at z=0. Applying the condition
(21) to the solutions (22) and (23), we obtain

. &€
[tAo ] n*+[t(e,+0y)+A0 + Ny Am+ L Tho pul n’
1
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1

3
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1

—[gk(e;—0,)]=0. (24)
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If 0, <0,, (24) does not admit of any positive root,
and so the system is stable. If 9, >0, , (24) allows one
positive root of n and so the system is unstable.

4. Effect of a Variable Horizontal Magnetic Field

Consider the motion of incompressible, infinitely
conducting Newtonian and Oldroydian viscoelastic
fluids in a porous medium in the presence of sus-
pended particles and a variable horizontal magnetic
field H(H(z), 0, 0). Let k(h,, h,, h.) denote the pertur-
bation in the magnetic field, then the linearized pertur-
bation equations are

(1 422)2 (1428
= = Jle=—= A—
€ ’at ot ot

KN
~|:—V6p+gég+~——(u—v)
€

+5—;{(V><H)><h+(Vxh)xH}}

. 0\ u
—<1 + 49 a) E v, (25)
V- -h=0 (26)
Oh
a—=V><(v><H) (27)

together with (8)—(10). Assume that the perturbation
h(h., h,, h.)in the magnetic field has also a space and
time dependence of the form (12). p, stands for the
magnetic permeability. Following the procedure as in
Sect. 3, we obtain

5 " . &
[t40,] "4+[T(Qz+91)+/~91 + N, Am+ E‘Tﬁo 4] n?
1

€
k—T(#2+ﬂ1)

+|:(Qz+gl]+m(N2+N1)+
1
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1
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1
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+[k§l"i(Qz+Ql)-gk(Qz‘Q1)]=0, (28)
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where, for the sake of simplicity, we have considered
that the Alfvén velocities of the two fluids are the
same, so that

pHP p H3

dno, 4dmo,

2=

For the potentially stable arrangement ¢, <g,, (28)
does not allow any positive root as there is no change
of sign. The system is therefore stable. Thus when the
ordinary (Newtonian) viscous fluid overlies an Oldroy-
dian viscoelastic fluid in a porous medium in the pres-
ence of suspended particles and a variable horizontal
magnetic field, the system is stable for the potentially
stable configuration.

For the potentially unstable configuration g, >, if

ki viles+01)>gkle,—0y), (29)
(28) does not admit any change of sign and so has no
positive root. Therefore the system is stable.

However, if

kZvi(e,+e,)<gkle,—ey), (30)
the constant term in (28) is negative. Equation (28),
therefore, allows one change of sign and so has one
positive root. The occurrence of a positive root implies
that the system is unstable.

Thus for the unstable case ¢,>9¢,, the system is
stable or unstable according as kZvi(g,+0,) is
greater than or smaller than gk(g,—g,). In the ab-
sence of a magnetic field, (28) has one positive root,
and so the system is unstable for all wave numbers for
the potentially unstable case. But the magnetic field
has got a stabilizing effect and completely stabilizes
the wave number band k > k*, where

«_ 9(@—0)
2

sec? 0,
(0;+01) VA

(31)
and 6 is the inclination of the wave vector k to the
direction of the magnetic field H i.e. k,=k cos0.

5. Effect of Uniform Rotation

Here we consider the motion of an incompressible
Oldroydian viscoelastic fluid containing of suspended
particles in a porous medium in uniform rotation
0 (0, 0, Q). Then the linearized perturbation equations
are
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a<]+/6t>at ( +/6t>[ op+gdo+ . (u—v)+ : (vxﬂ)] < + 20 6t> klv (32)
together with (8)—(10).
Following the same procedure as in Sect. 3 (and Chandrasekhar [1], p. 443), we obtain
m mn(1+4in) N;+mnN, (33)
eV ev
(rn+1)|:{(1+}tn)n+(1+ion)—}Ql+{n+—}gz:|
kl kl
B gk?0,—gk*(1+4n)o,
ev ev
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ky ky
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* . mnN . ev &V ev o
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where
k
% el 421+ inl(tnt1) 4]

mnN

|:n(1+/1n)(tn+1)+(1 +4in)

for a highly viscous fluid. v(= u/g) stands for the kine-
matic viscosity.

Here we assumed the kinematic viscosities of both
fluids to be equal, i.e. v, =v,=v (Chandrasekhar [1],
p.443) and "N MmN _mN,

[ 2 Q2
assumptions do not obscure any of the essential fea-
tures of the problem.

Equation (33), after substituting the value of » from
(34) and simplification, yields

, as these simplifying

Asn+A,n" 2+ A4, n*!

+ ... +A4A,n*+ A, n+A4,=0 (35)
where
A13=’;‘4T4Ql’
2 2
Ao=—gk(gz—gl)e—”[s—§+292], (36)
kil ki

and the coefficients A, — A, ,, being quite lengthy and
not needed in the discussion of stability, have not been
written here.

For the potentially stable arrangement g, <g,, all
the coefficients of (35) are positive. So, all the roots of

ev
+(1+Aon)(tn+1) k—]
1,

(35) are either real and negative, or there are complex
roots (which occur in pairs) with negative real parts
and the rest negative real roots. The system is there-
fore stable in each case.

For the potentially unstable arrangement ¢, >9,,
the constant term is negative, and so there is at least
one change of sign in (35). Therefore (35) allows at
least one positive root of n, meaning thereby instabil-
ity of the system.

Thus the effect of uniform rotation on the motion of
an incompressible viscous fluid overlying an Oldroy-
dian viscoelastic fluid through a porous medium in the
presence of suspended particles makes the system sta-
ble for potentially stable cases and unstable for poten-
tially unstable cases.
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